메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To design software with a novel algorithm, which analyzes the tortuosity and vascular dilatation infundal images of retinopathy of prematurity (ROP) patients with an acceptable accuracy for detecting plus disease. Methods: Eighty-seven well-focused fundal images taken with RetCam were classified to three groups of plus,non-plus, and pre-plus by agreement between three ROP experts. Automated algorithms in this study weredesigned based on two methods: the curvature measure and distance transform for assessment of tortuosityand vascular dilatation, respectively as two major parameters of plus disease detection. Results: Thirty-eight plus, 12 pre-plus, and 37 non-plus images, which were classified by three experts, weretested by an automated algorithm and software evaluated the correct grouping of images in comparison toexpert voting with three different classifiers, k-nearest neighbor, support vector machine and multilayer perceptronnetwork. The plus, pre-plus, and non-plus images were analyzed with 72.3%, 83.7%, and 84.4%accuracy, respectively. Conclusions: The new automated algorithm used in this pilot scheme for diagnosis and screening of patientswith plus ROP has acceptable accuracy. With more improvements, it may become particularly useful, especiallyin centers without a skilled person in the ROP field.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0