메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been introduced to solve the problem of handling time series by including time expressions into association rules. In this paper we introduce a novel algorithm for Incremental Mining of General Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits introduced by our algorithm are that it offers significant advantages in terms of storage and running time and it can handle the problem of mining general temporal association rules in incremental databases by building TFP-trees incrementally. It can be utilized and applied to real life application domains. We demonstrate our algorithm and its advantages in this paper.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0