메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국유통과학회 유통과학연구 유통과학연구 제14권 제9호
발행연도
2016.1
수록면
25 - 29 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - Finding top K persuaders in consumer network is an important problem in marketing. Recently, a new method of computing persuasion scores, interpreted as fixed point or stable distribution for given persuasion probabilities, was proposed. Top K persuaders are chosen according to the computed scores. This research proposed a new definition of persuasion scores relaxing some conditions on the matrix of probabilities, and a method to identify top K persuaders based on the defined scores. Research design, data, and methodology - A new method of computing top K persuaders is computed by singular value decomposition (SVD) of the matrix which represents persuasion probabilities between entities. Results - By testing a randomly generated instance, it turns out that the proposed method is essentially different from the previous study sharing a similar idea. Conclusions - The proposed method is shown to be valid with respect to both theoretical analysis and empirical test. However, this method is limited to the category of persuasion scores relying on the matrix-form of persuasion probabilities. In addition, the strength of the method should be evaluated via additional experiments, e.g., using real instances, different benchmark methods, efficient numerical methods for SVD, and other decomposition methods such as NMF.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0