메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제10권 제3호
발행연도
2015.1
수록면
305 - 317 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Association rule mining is one of the most popular data mining techniques, and its aim is to extract the association rules, the cause-and-effect relations between the items, from the given transaction data. Several algorithms such as apriori and its variants have been developed in order to extract the association rules in efficient way, however, they often produce the plethora of the association rules that is difficult for the analyzers to interpret and exploit. To address this issue, this paper aims to propose a visualization method called structured association map. The structured association map is a variant of the well known cluster hear map, and it focuses on ordering the items in more meaningful way. The structured association map and the cluster heat map have in common that the dendrogram obtained by hierarchical clustering is appended to the matrix for data visualization and the items are ordered according to the dendrogram. On the contrary, the primary difference between the two visualization methods lies in the way the hierarchy of the column items is generated. In structured association map, the row items are ordered at first and their order is considered in ordering the column items, while the row items and column items of the cluster heat map are ordered in similar manner. Consequently, the structured association map can represent both antecedents and consequents of the association rules in more effective way, and it is expected to help the analyzers to understand the structure of the extracted association rules more conveniently.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0