메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, the appropriate model is selected for the risk assessment of the electric utility pole data with the help of cheat sheets and k-fold cross validation. In order to analyze, predict and forecast the data, the appropriate model has to be selected. The major issue is the declination of the accuracy in the model fitting, which may result in poor model selection. There are different type of machine learning algorithm, which makes it difficult to conclude the model selection. To ensure the proper selection of the model, we undergo a two-step process. Firstly, the basic model is selected with the existing model selection cheat sheets named as Scikit learn and Microsoft azure, by understanding the available input and required output of the data. After getting through the multiple question, the respective models such as Generalized Additive Model, Generalized Linear Model, Linear Regression and Support Vector Machine are obtained. In order to attain the appropriate model, we perform k-fold cross validation to estimate the risk of the algorithms, by comparing 2-fold, 8-fold and 10-fold cross validation. Between the three set, the 10-cross fold validation of generalized additive model is selected with the least risk error. Using k-fold cross validation, we estimate the accuracy of the model that is suitable for the data, by using the electric power data set.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0