메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
경북대학교 자연과학대학 수학과 Kyungpook Mathematical Journal Kyungpook Mathematical Journal 제48권 제4호
발행연도
2008.1
수록면
665 - 684 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Runge-Kutta-NystrÄom (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance delta, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing delta, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in delta as δ → 0 , that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0