메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal 제56권 제6호
발행연도
2015.1
수록면
1,461 - 1,477 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Preoperative chemoradiation therapy (CRT) is the standard treatment for patients with locally advanced rectal cancer (LARC) and can improve local control and survival outcomes. However, the responses of individual tumors to CRT are not uniform and vary widely, from complete response to disease progression. Patients with resistant tumors can be exposed to irradiation and chemotherapythat are both expensive and at times toxic without benefit. In contrast, about 60% of tumors show tumor regression and T and N down-staging. Furthermore, a pathologic complete response (pCR), which is characterized by sterilization of all tumor cells, leads to an excellent prognosis and is observed in approximately 10–30% of cases. This variety in tumor response has lead to an increased need to develop a model predictive of responses to CRT in order to identify patients who will benefit from this multimodaltreatment. Endoscopy, magnetic resonance imaging, positron emission tomography, serum carcinoembryonic antigen, and molecular biomarkers analyzed using immunohistochemistry and gene expression profiling are the most commonly used predictive models in preoperative CRT. Such modalities guide clinicians in choosing the best possible treatment options and the extent of surgery for each individual patient. However, there are still controversies regarding study outcomes, and a nomogram of combined models of future trends is needed to better predict patient response. The aim of this article was to review currently available tools for predicting tumor response after preoperative CRT in rectal cancer and to explore their applicability in clinical practice for tailored treatment.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0