메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제16권 제2호
발행연도
2017.1
수록면
128 - 139 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
철도는 항공기, 선박 등과 더불어 대표적 대중교통 수단으로서 최근 고속 철도의 등장으로 인해 그 비중이 점점 더 높아지고 있으며, 아울러 대형사고의 위험 또한 증가하고 있다. 이중에서 철도 차량의 차축 베어링은 높은 안전성이 요구되는 부품으로서 최근 이의 고장예측을 위한 건전성 관리기술(Prognostics and Health Management, PHM)에 많은 연구가 집중되고 있다. PHM은 센서를 통해 얻은 데이터로부터 결함관련 특징신호를 추출하고 현재의 고장수준 진단과 미래의 고장싯점을 예측하는 기술로서, 이중에서 가장 중요한 부분은 올바른 특징신호를 추출하는 것이다. 그러나 지금까지의 특징신호들은 잡음으로 인한 심한 변동이나 비단조 경향으로 인해 고장예측에 이용하기에 부족한 점이 있었다. 본 연구에서는 이를 극복하기 위해 주파수 에너지 이동현상을 기반으로 정보 엔트로피를 특징신호로 사용하는 새로운 특징신호 추출법을 개발하고 IEEE 2012 PHM 경진대회에서 공개된 FEMTO 베어링 수명시험 데이터를 대상으로 기존의 특징신호들과 고장예측 성능비교를 함으로써 그 우수성을 검증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0