메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제19권 제2호
발행연도
2017.1
수록면
599 - 606 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since diagnosis of alcohol addiction is largely questionnaire-based, the information communication technology (ICT)-driven advancement of big data application enables development of mathematical models for more effective diagnosis of addiction. This study presents a prototype diagnostic mathematical model for an interdisciplinary alcohol addiction diagnostic system under construction. Survey data acquired from 253 subjects using the Korean alcohol addiction test developed by the Korean National Mental Health Center was utilized to develop a mathematical model based on ordinal logistic analysis which defines the degree of alcohol addiction as probability. Because the type of link function determines the model’s accuracy, five types of link functions such as logit function, cauchit function, complementary log-log function, negative log-log function, and probit function were used to develop five types of diagnostic mathematical models. These models were then assessed for accuracy using prediction accuracy, probability of detection, and false alarm rate tests to select an optimal model for alcohol addiction diagnosis. Our study shows the resistance distribution of alcoholism is similar to the Gumbel distribution, and a model which uses the complementary log-log function is the most suitable one for the diagnosis of alcoholism.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0