메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제11권 제4호
발행연도
2009.1
수록면
1,749 - 1,760 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The k-means clustering is one of the simplest unsupervised algorithm used generally in solving clustering problems. However, it may rely on the initial cluster seed and thus it is suffer from the local trap problem due to that its system has multiple local energy minima in a rugged energy landscape. Hence, the global optimal clustering may not be identified. This paper focuses on this problem, and thus we propose to use the Stochastic approximation Monte Carlo(SAMC) algorithm implementing the k-means clustering method to overcome the local trap problem in clustering analysis. SAMC is a general importance sampling and optimization algorithm to search the sample space broadly and escape from the local trap problem regardless of the initial point. The algorithm is tested on simulated and the real dataset, and compared with the k-means clustering algorithm. The numerical results are in favor of SAMC based on the minimization criterion.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0