메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제37권 제2호
발행연도
2017.1
수록면
129 - 136 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are increasingly important in immunocompromised patients. Nucleic acid extraction methods could affect the results of viral nucleic acid amplification tests. We compared two automated nucleic acid extraction systems for detecting CMV and EBV using real-time PCR assays. Methods: One hundred and fifty-three whole blood (WB) samples were tested for CMV detection, and 117 WB samples were tested for EBV detection. Viral nucleic acid was extracted in parallel by using QIAsymphony RGQ and QIAcube (Qiagen GmbH, Germany), and real-time PCR assays for CMV and EBV were performed with a Rotor-Gene Q real-time PCR cycler (Qiagen). Detection rates for CMV and EBV were compared, and agreements between the two systems were analyzed. Results: The detection rate of CMV and EBV differed significantly between the QIAsymphony RGQ and QIAcube systems (CMV, 59.5% [91/153] vs 43.8% [67/153], P=0.0005; EBV, 59.0% [69/117] vs 42.7% [50/117], P=0.0008). The two systems showed moderate agreement for CMV and EBV detection (kappa=0.43 and 0.52, respectively). QIAsymphony RGQ showed a negligible correlation with QIAcube for quantitative EBV detection. QIAcube exhibited EBV PCR inhibition in 23.9% (28/117) of samples. Conclusions: Automated nucleic acid extraction systems have different performances and significantly affect the detection of viral pathogens. The QIAsymphony RGQ system appears to be superior to the QIAcube system for detecting CMV and EBV. A suitable sample preparation system should be considered for optimized nucleic acid amplification in clinical laboratories.

목차

등록된 정보가 없습니다.

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0