메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제27권 제4호
발행연도
2006.1
수록면
189 - 196 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Micro computed tomography (micro-CT) has been used for in vivo animal study owing to its noninvasive and high spatial resolution capability. However, the sizes of existing detectors for micro-CT systems are too small to obtain whole-body images of a small animal object with ~10 micron resolution and a part of its bones or other organs should be extracted. So, we have introduced the zoom-in micro-tomography technique which can obtain high-resolution images of a local region of an live animal object without extracting samples. In order to verify our zoom-in technique, we performed in vivo animal bone study. We prepared some SD (Sprague-Dawley) rats for making osteoporosis models. They were divided into control and ovariectomized groups. Again, the ovariectomized group is divided into two groups fed with normal food and with calcium-free food. And we took 3D tomographic images of their femurs with 20 micron resolution using our zoom-in tomography technique and observed the bone changes for 12 weeks. We selected ROI (region of interest) of a femur image and applied 2D FDT (fuzzy distance transform) to measure the trabecular bone thickness. The measured results showed obvious bone changes and big differences between control and ovariectomized groups. However, we found that the reliability of the measurement depended on the selection of ROI in a bone image for thickness calculation. So, we extended the method to 3D FDT technique. We selected 3D VOI (volume of interest) in the obtained 3D tomographic images and applied 3D FDT algorithm. The results showed that the 3D technique could give more accurate and reliable measurement.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0