메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제24권 제4호
발행연도
2003.1
수록면
293 - 299 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, the correlation of preㅃ ure drop about the Newtonian and non- Newtonian fluid ₩as investigated experimentally for vibrating intravascular lung assist device (v1VLAD) and we determined correlation equation to make a Prediction about Pressure drop for designing VIVLAD. Design conditions to Predict the Pressure droP of the modules were studied through an experimental modeling before inserting the arti仇cial lung assist deVice into as veno짓15. ExperimentS were performed by distined water, glycerol/ water 1lliXed solution (4O% glycerol) of Newtonian nuids, and the bovine blood of non- Newtonian flulds. These flulds were nowed outside and parallel of hollow fiber membranes. Also we measured pressure drop according to the numbel of the fiber membranes which ware inselted into the inside diameter of shell of 3 cm, and developed the predictjon equations by curve fitting methㅇ d based on correlation between the experimental pressure drop and the frontal area or the packing density of device. The result showed that the pressure drop and the friction factor of the watel· /glycerol mixed solution were similar to that of bovine b10od. It was showed that the water/ 卽ycerol mixed solution (40% glycerol) could be used for measuring the pressure drop and the friction factor instead of the bovine blood. Also, we could estimate the prediction equation of pressure drop and friction factor as the function of packing density at the number of hollow fibers. We obtained the rehance of the prediction equations because the pressure drㅇ p and the friction factor measured from the experiments were similar to that from the prediction equa仇on. These results may be (ised to further usefulness foT the design of VIVLAD.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0