메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한예방의학회 예방의학회지 예방의학회지 제42권 제2호
발행연도
2009.1
수록면
135 - 142 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives : An appropriate sampling strategy for estimating an epidemiologic volume of diabetes has been evaluated through a simulation. Methods : We analyzed about 250 million medical insurance claims data submitted to the Health Insurance Review & Assessment Service with diabetes as principal or subsequent diagnoses, more than or equal to once per year, in 2003. The database was re-constructed to a patient-hospital profile that had 3,676,164 cases, and then to a patient profile that consisted of 2,412,082 observations. The patient profile data was then used to test the validity of a proposed sampling frame and methods of sampling to develop diabetic-related epidemiologic indices. Results : Simulation study showed that a use of a stratified two-stage cluster sampling design with a total sample size of 4,000 will provide an estimate of 57.04% (95% prediction range, 49.83 - 64.24%) for a treatment prescription rate of diabetes. The proposed sampling design consists, at first, stratifying the area of the nation into metropolitan/city/county and the types of hospital into tertiary/secondary/primary/clinic with a proportion of 5:10:10:75. Hospitals were then randomly selected within the strata as a primary sampling unit, followed by a random selection of patients within the hospitals as a secondly sampling unit. The difference between the estimate and the parameter value was projected to be less than 0.3%. Conclusions : The sampling scheme proposed will be applied to a subsequent nationwide field survey not only for estimating the epidemiologic volume of diabetes but also for assessing the present status of nationwide diabetes control.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0