메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한예방의학회 예방의학회지 예방의학회지 제41권 제6호
발행연도
2008.1
수록면
380 - 386 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives : Valid data on the national cancer incidence (NCI) is the data should be needed to plan, monitor and evaluate the national cancer control programs. The purpose of this study was to estimate the NCI for 2000-2002 from 8 population-based cancer registries database in Korea (KRCR DB). Methods : We defined the expected number of cancer cases in each registry as the number of observed casesand then adding to the weighted observed cases, according to sex, age groups, and the proportion of the population covered by each registry for the population of the eight regions and the population of all areas with excluding the 8 regions. From the expected number of total cancer incidents, the estimated NCI was calculated by dividing the expected number of cancer cases by the number of the total population. The standard error (SE) of the estimated incidence was also taken from the expected number of total cancer incidents. Results : The overall estimated crude rates in 2000-2002 were 267.1 and 219.0 per 100,000 for men and women,respectively. The overall age-standardized rates (ASR) were 290.1 and 180.7 per 100,000, respectively. Compared with the ASRs obtained from Korea National Cancer Incidence database (KNCI DB), the estimated ASRs fromthe KRCR DB did not show statistically significant differences except for some cancers in women. For the aspect of the SE, index of DCO(death certificate only) and of MV(microscopically verified), the estimated ASRs from the KRCR DB are more accurate and they have higher quality rather than the calculated ASRs from the KNCI DB. Conclusions : We found that this developed method using the KRCR DB is valid and it could be another strategy for estimating the NCI in Korea.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0