메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제53권 제2호
발행연도
2016.1
수록면
487 - 494 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $p$ be an odd prime and $c$ be a fixed integer with $(c, p)=1$. For each integer $a$ with $1\le a \leq p-1$, it is clear that there exists one and only one $b$ with $0\leq b \leq p-1$ such that $ab \equiv c \bmod p$. Let $N(c, p)$ denote the number of all solutions of the congruence equation $ab \equiv c \bmod p$ for $1 \le a, b \leq p-1$ in which $a$ and $\overline{b}$ are of opposite parity, where $\overline{b}$ is defined by the congruence equation $b\overline{b}\equiv 1 \bmod p $. The main purpose of this paper is using the mean value theorem of Dirichlet $L$-functions and the properties of Gauss sums to study the computational problem of one kind mean value function related to $E(c, p)=N(c, p)-\frac{1}{2}\phi(p)$, and give its an exact computational formula.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0