메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제52권 제1호
발행연도
2015.1
수록면
105 - 123 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $ f_\beta=h_\beta+\overline{g}{_\beta}$ and $F_a=H_a+\overline{G}_a$ be harmonic mappings obtained by shearing of analytic mappings $$h_\beta+g_\beta={1}/{(2i{\sin}\beta)}\log\left({(1+ze^{i\beta})}/{(1+ze^{-i\beta})}\right),~0<\beta<\pi$$ and $H_a+G_a={z}/{(1-z)}$, respectively. Kumar \emph{et al.} \cite{ku and gu} conjectured that if $\omega(z)=e^{i\theta}z^n (\theta\in\mathbb{R},\,\, n\in \mathbb{N})$ and $ \omega_a(z)={(a-z)}/{(1-az)},\,a\in(-1,1)$ are dilatations of $f_\beta$ and $F_a$, respectively, then $F_a\widetilde\ast f_\beta \, \in S_H^0$ and is convex in the direction of the real axis, provided $a\in \left[{(n-2)}/{(n+2)},1\right)$. They claimed to have verified the result for $n=1,2,3$ and $4$ only. In the present paper, we settle the above conjecture, in the affirmative, for $\beta=\pi/2$ and for all $n\in \mathbb{N}$.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0