메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제14권 제3호
발행연도
2008.1
수록면
245 - 256 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: We have developed a prototype Personal Health Record (PHR) system that can replace traditional paper‐based personal health diary with structured clinical details for healthcare. Because numerous disparate electronic versions of medical record systems are found unable to share medical information among hospitals, pharmacies and clinicians, the proposed PHR system can be used to facilitate patient care. Methods: The PHR system has been implemented on a flash memory (USB drive) that is found to be compact, light weight, cost‐effective and sufficient enough to handle a large amount of clinical data. International communication standard HL7 has recommended Continuity of Care Document (CCD) that can provide complete and accurate summary of an individual health and medical history. Care documents stored in USB can also support alerts, reminders, self‐management, and stakeholder communication in a standardized manner. Results: The proposed PHR system consists of modules that help collect distributed patient information from multiple sources to generate individual care document (CCD) as personal health record. The preliminary experiment has demonstrated an acceptable performance. That is, the PHR is found to integrate and share various clinical data such as medications, procedures, patient demographics from admission system, test results from LIS, DICOM images from PACS, bio‐signals from patient monitors. Especially, the PHR system was tested by connecting to standardized monitoring device (Mediana device) to collect ECG data. The PHR system had received 3410 HL7 messages for 1 hour, then generate CCD document.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0