메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제15권 제12호
발행연도
2017.1
수록면
293 - 301 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Most new products not only suddenly disappear in the market but also quickly cannibalize older products. Under such a circumstance, retailers may have too much stock, and customers may be faced with difficulties discovering products suitable to their preferences among short life cycle products. To address these problems, recommender systems are good solutions. However, most previous recommender systems had difficulty in reflecting changes in customer preferences because the systems employ static customer preferences. In this paper, we propose a recommendation methodology that considers dynamic customer preferences. The proposed methodology consists of dynamic customer profile creation, neighborhood formation, and recommendation list generation. For the experiments, we employ a mobile image transaction dataset that has a short product life cycle. Our experimental results demonstrate that the proposed methodology has a higher quality of recommendation than a typical collaborative filtering-based system. From these results, we conclude that the proposed methodology is effective under conditions where most new products have short life cycles. The proposed methodology need to be verified in the physical environment at a future time.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0