메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
서울대학교 인지과학연구소 Journal of Cognitive Science Journal of Cognitive Science 제19권 제2호
발행연도
2018.1
수록면
165 - 193 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
marks on paper. What a mark symbolizes to us or to other agents cannot be predicted on the basis of measurement and calculation. Without admitting any explicit notion of an agent, quantum theory implies a role for an unpredictable symbol-handling agent. To accept agents and symbols into physics is to see mechanisms, especially clocks, not in isolation but as tools that agents build and adjust as needed. We model a symbol-handling agent by combining a modified Turing machine with an adjustable clock, needed to allow communication of symbols from one agent to another. To communicate, agents must adjust their clocks so as to mesh their rhythms of oper- ation. We call this meshing of rhythms logical synchronization and display its features. While symbols are digital, maintaining logical synchronization requires something analog, idiosyncratic, and unpredictable, beyond symbols. Our main claim is that logically synchronized rhythms of symbols need not be seen as taking place in some externally supplied “space and time,” but instead are the raw material out of which physicists construct time, space, and spacetime. We hypothesize that all living organisms employ logically synchronized rhythms of symbols. We invite collaboration to explore, in a variety of contexts for people and other living organisms, the situations involv- ing logical synchronization of rhythms of symbols that differ from those used in physics. Accompanying such initial study, we would like to see the development of mathematical expressions of logical synchronization applicable to more complex cybernetic systems than those we discuss here.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0