메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Zhiyong Zheng (Central South University) Jun Peng (Central South University) Kunyuan Deng (Central South University) Kai Gao (Central South University) Heng Li (Central South University) Bin Chen (Central South University) Yingze Yang (Central South University) Zhiwu Huang (Central South University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2019-ECCE Asia
발행연도
2019.5
수록면
3,297 - 3,302 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lithium-ion battery remaining useful life (RUL) is a key parameter on battery management system. Many machine learning methods are applied to RUL predictions, but they generally suffer from two limitations: (i) the extracted features fail to reflect the information hidden in the historical degradation status, and (ii) the accuracy cannot be guaranteed in the evaluation of battery degradation due to the non-linearity. In this paper, a new prediction method is proposed combining the time window (TW) and Gradient Boosting Decision Trees (GBDT). First, the energy (VCE) and the fluctuation index (VFI) of voltage signal are verified and selected as features. Then, a TW based feature extraction method is designed to extract features from the historical discharge process. After that, GBDT is adopted to model the relation of features and RUL. The proposed method is implemented on a recognized battery degradation dataset, and the advantages in accuracy are proven.

목차

Abstract
I. INTRODUCTION
II. PROPOSED APPROACH
III. EXPERIMENT AND DISCUSSION
IV. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0