메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한경훈 (연세대학교) 전병환 (연세대학교) 김세근 (연세대학교) 장영걸 (연세대학교) 정성희 (연세대학교) 심학준 (연세대학교) 장혁재 (연세대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제4호
발행연도
2019.7
수록면
592 - 601 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
관상동맥 시술을 위해 혈관 조영 X-선 영상은 시술 진단 및 보조에 유용하게 활용된다. 삼차원의 복잡한 구조를 가진 관상동맥을 이차원 X-선 영상에서 기존의 단일기법만을 사용하여 정확히 분할하는 것에 어려움이 있으며, 특히 혈관이 중간에 끊어지거나 말단부위혈관이 유실되는 현상으로부터 오차가 크게 발생하는 경향이 있었다. 이러한 문제를 해결하기 위하여 기존 단일기법으로 초기분할 단계를 거친 후, 초기분할결과를 기반으로 정교한 보정영역을 설정하는 단계, 보정영역을 대상으로 패치기반 지역보정을 수행하는 단계가 수행된다. 본 연구를 통해 끊긴 혈관을 보완한 분할 결과를 구할 수 있을 뿐만 아니라 미세혈관까지 포함하지 못한 참 값의 한계점을 해결할 수 있다. 또한, 존재하는 기존 관상동맥 분할방법들에 융합하여 추가적인 성능개선을 얻어낼 수 있다. 본 논문에서는 Fully convolutional network 기반 깊은 신경망 네트워크인 U-net을 활용하였으며, 제안된 보정방법을 융합하여 기존 U-net 단일 모델대비 성능이 상당히 개선된다는 것을 실제 여러 환자들의 데이터 셋을 통하여 증명하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안한 방법
Ⅲ. 실험 결과 및 분석
Ⅳ. 결론
참고문헌 (References)

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0