메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
공준배 (국립군산대학교) 황태희 (국립군산대학교) 장민석 (국립군산대학교) 이연식 (국립군산대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2019년 한국컴퓨터정보학회 하계학술대회 논문집 제27권 제2호
발행연도
2019.7
수록면
281 - 284 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 CNN (Convolution Neural Networks)의 첫 번째 컨볼루션층(convolution layer)을 RGB-csb(RGB channel separation block)로 대체하여 입력 영상의 RGB 값을 특징 맵에 적용시켜 정확성을 제고시킬 수 있는 선행연구 결과에 추가적으로, 훈련 및 시험 영상 수에 따른 분석을 통하여 정확도 향상 방법을 제안한다. 제안한 방법은 영상의 개수가 작을수록 각 학습 간의 정확도 편차가 크게 나타나는 불안정성은 있지만 기존 CNN모델에 비하여 정확도 차이가 증가함을 알 수 있다.

목차

요약
Ⅰ. Introduction
Ⅱ. RGB-channel separation block
Ⅲ. Training and Testing Images
Ⅳ. Experiments
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000914855