메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
백주련 (평택대학교) 김진영 (평택대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2019년 한국컴퓨터정보학회 하계학술대회 논문집 제27권 제2호
발행연도
2019.7
수록면
23 - 26 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사물인터넷(IoT)은 지금의 우리가 살고 일하는 모든 방식을 변화시키고 있다. IoT를 통해 데이터를 생성하고 저장하고 연결된 장치와 상호작용하여 비즈니스는 물론 우리의 일상 생활을 개선하고 있는 것이다. 무수히 많은 센서들이 연결된 세상은 센서들에 의해 그 어느 때보다 거대한 양의 데이터들을 생산하고 있다. JSON, XML 같은 트리 구조의 데이터 타입은 대량 데이터 저장 · 전송 · 교환 등에 주요하게 사용되는데 이는 트리 구조가 이형 데이터 간의 유연한 정보 전송과 교환을 가능하게 하기 때문이다. 반면에, 효용성 높은 정보나 감추어져 있는 정보들을 트리 구조의 대량 데이터들로부터 추출하는 것은 일반 데이터 구조에 비해 훨씬 어려우며 더 난해한 문제들을 발생시킨다. 본 논문에서는 트리 구조의 대량 스트리밍 데이터로부터 가중치가 부여된 주요한 부정 패턴들을 추출하기 위한 방법을 공식화한다.

목차

요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000913929