메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
현석환 (연세대학교) 이준성 (연세대학교) 전성환 (연세대학교) 김예진 (연세대학교) 김광염 (건설기술연구원) 윤태섭 (연세대학교)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제29권 제3호(통권 제140호)
발행연도
2019.6
수록면
184 - 196 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 화강암 시편에서 수압 파쇄법에 의해 생성된 미세균열의 3차원 형상을 X-ray CT 영상과 딥러닝을 이용하여 추출하였다. 실험으로 생성된 미세균열은 X-ray CT 영상 상에서 일반적인 영상처리 방법으로는 추출하기 매우 어렵고 육안으로만 관찰이 가능한 형태를 지닌다. 하지만 본 연구에서 제안한 합성곱 신경망(Convolutional neural network) 기반 인코더-디코더(Encoder-Decoder) 구조의 딥러닝 모델을 통해 미세균열을 정량적으로 추출할 수 있었다. 특히 픽셀 단위의 미세균열 추출을 위해 인코딩 과정에서 소실되는 정보를 디코딩 과정으로 직접 전달하는 디코더 모델을 제안하였다. 또한, 딥러닝 기반 신경망 학습에 필요한 데이터의 수를 증가시키기 위해 이미지의 분할(Division), 회전(Rotation), 그리고 반전(Flipping) 등으로 데이터를 생성하는 영상 증대 방법을 적용하였으며 이때 최적의 조합을 확인하였다. 최적의 영상 학습 데이터 증대 방법을 적용하였을 때 검증 데이터뿐만 아니라 테스트 데이터에서의 성능 향상을 확인하였다. 학습 데이터의 원본 개수가 딥러닝 기반 신경망의 균열 추출 성능에 미치는 영향을 확인하고 딥러닝 기술을 사용하여 성공적으로 미세균열을 추출하였다.

목차

ABSTRACT
초록
1. 서론
2. 재료 및 방법
3. 학습 데이터 구성
4. 결과 및 분석
5. 결론
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-532-000882860