메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nam Jun Cho (Hanyang University) Jong Bok Kim (Hanyang University) Sang Hyoung Lee (Korea Institute of Industrial Technology) Il Hong Suh (Hanyang University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.3
발행연도
2019.6
수록면
193 - 201 (9page)
DOI
10.5573/IEIESPC.2019.8.3.193

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we propose a method for improving the recognition performance of a probabilistic model through entropy analysis after transforming the time-varying reaction force/torque (F/T) signals. To conduct a task, it is important for a robot to recognize the reaction forces/torques from physical interactions with objects or the environment. The reaction force/torque signals measured using an F/T sensor contain a large number of noise components owing to the sensitivity of the sensor. Therefore, the recognition performance depends on how the noise components included in the training and test datasets are dealt with. For this purpose, the reaction force/torque signals are transformed from time-domain signals to noise-reduced and/or noise-robust features through transformation techniques. Herein, we apply three different transformation techniques: fast Fourier transform, discrete wavelet transform, and moment transform. Next, taskrelevant features are selected from all these transformed features based on entropy analysis, after which the features are used to learn a hidden Markov model. To evaluate our proposed method, several robot manipulation tasks (approaching, transferring, and positioning) are conducted using an open dataset with the reaction force/torque signals.

목차

Abstract
1. Introduction
2. Proposed Method
3. Experimental Results
4. Discussion
5. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000907034