메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
JEONGHO KIM (SEOUL NATIONAL UNIVERSITY) JINWOOK JUNG (SEOUL NATIONAL UNIVERSITY) YESOM PARK (EWHA WOMANS UNIVERSITY) CHOHONG MIN (EWHA WOMANS UNIVERSITY) BYUNGJOON LEE (THE CATHOLIC UNIVERSITY OF KOREA)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.23 No.2
발행연도
2019.6
수록면
93 - 114 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion.
We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences.
The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first- order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.

목차

ABSTRACT
1. INTRODUCTION
2. INVESTIGATION ON THE STRONG L²-STABILITY OF EXPLICIT SECOND ORDERSCHEMES FOR CONVECTION EQUATION
3. MODIFIED IMPLICIT RUNGE-KUTTA METHOD
4. MODIFIED IMPLICIT RK2 METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
5. NUMERICAL EXPERIMENTS
6. CONCLUSION
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-410-000881504