메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Davood Vahdat (Shahid Beheshti University) Fereidoon Shams (Shahid Beheshti University) Eslam Nazemi (Shahid Beheshti University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.18 No.2
발행연도
2019.6
수록면
274 - 282 (9page)
DOI
10.7232/iems.2019.18.2.274

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays the Internet of Things as a new generation of internet and a network that connects everything is highly regarded. There are a large number of devices on the IoT, as well as a high level of heterogeneity that exists between these devices poses challenges, more than ever. One of the most important issues in the IoT in the area of data management is cost reduction of the search. In this regard, clustering objects are considered as a potential solution where in that process, objects with the same action or data content stay on a cluster. In this study, an approach is offered for clustering objects in the IoT environment, with inspiration from the behavior of ants which is called swarm intelligence. Due to the high scalability and distributed nature of ant clustering algorithm (for instance its ability to selforganize), the proposed approach is adapted to the problem. In regards to runtime and accuracy, the results show that the proposed approach functions well, and also it has a high scalability against increasing of the issue’s magnitudes.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORK
3. THE PROPOSED APPROACH
4. PERFORMANCE EVALUATION
5. CONCLUSION
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0