본 연구는 전기공사업을 운영하는 기업의 경쟁력을 평가하기 위해 DEA모형과 Malmquist 생산성지수를 활용하여 효율성과 생산성 변화를 분석하였다. 분석대상은 전기공사업을 운영하는 외감업체로 2010년부터 2017년까지 연속자료가 존재하는 52개 기업이다. 투입요소는 총자본, 인건비, 판매비와 관리비를 사용하였고, 산출요소로는 매출액과 영업이익을 활용하였다. 투입 및 산출요소 선정은 전문가 설문조사를 통해 진행함으로써 논문의 객관성과 차별성을 높이고자 노력하였다. 또한, 그간 선행연구 등에서 다루지 않았던 전기공사업체를 대상으로 효율성과 생산성 변화를 분석하였고, 선행연구 등에 비해 분석기간을 확장했다는 측면에서 그 의의가 있다. 본 연구의 주요 분석결과는 다음과 같다. 먼저 DEA모형을 활용한 효율성 분석 결과, 전체기간 동안 CCR모형 효율성 값의 평균은 0.59, BCC모형의 평균은 0.71로 각각 도출되었다. BCC모형의 값이 상대적으로 높은데 비해 CCR 모형의 값이 낮아, 기업은 규모의 축소 또는 확대를 통해 효율성을 증진할 필요가 있는 것으로 나타났다. 연도별 효율성에 있어서는 전기공사업 계약액이 증가한 경우 효율성도 개선되는 것으로 나타나, 경기변동과 효율성이 상관관계가 있는 것으로 분석되었다. 다음으로 Malmquist 생산성지수를 활용하여 생산성 변화를 분석한 결과는 다음과 같다. 분석기간 동안 전기공사업의 생산성은 2%가량 감소한 것으로 나타났다. 생산성 저하는 TCI의 감소가 원인으로 분석기간 중 TECI는 1% 증가한데 비해, TCI는 4% 감소하였다. 또한 TECI는 분석기간 동안 1% 증가했는데, 이는 SECI가 2% 증가한데 기인하는 것으로 분석되었다. 한편, 전기공사업 개별기업의 8년간 생산성 변화를 분석한 결과, MPI가 가장 높은 기업은 평균 13%의 생산성 향상이 있었고, 가장 낮은 기업은 30%의 생산성 저하가 발생한 것으로 분석되었다. 또한 분석기간 중 생산성이 향상된 기업은 25개사, 퇴보한 기업은 27개사로 각각 나타났다. 생산성 분석 결과, 전기공사업체는 기술진보, 생산방식의 혁신, 새로운 관리기법의 도입 등 기술변화가 산업발전을 위해 중요한 요소로 판단된다. 선행연구와 같이 본 연구에서도 다음과 같은 한계점이 존재한다. 첫째, 분석대상 기업의 수가 52개사에 불과하여 결과의 일반화에 한계가 있다. 둘째, 분석대상 기업규모가 상이함에도 불구하고 규모, 사업영역 등으로 구분하지 못하고 개별 분석하였다. 셋째, 투입요소와 산출요소 선정에 있어 기존 선행연구에 비해 객관성을 유지하기 위해 노력하였으나, 이는 여전히 한계가 남는다. 넷째, 기업별 효율성과 생산성 변화의 값이 도출되었지만, 이를 토대로 구체적인 정책과 대안 마련이 쉽지 않다. 이와 같은 한계는 향후 새로운 연구를 통해 진전되기를 기대한다.
This study analyzed the efficiency and productivity changes by using the DEA model and the Malmquist Productivity Index Model to evaluate the competitiveness of electrical construction companies. The target of the analysis is 52 companies with continuous data from 2010 to 2017 as listed and externally listed companies. The inputs factors used total capital, labor, selling and administrative expenses, sales and profit were used as the output factors. The input and output factors were selected through a questionnaire survey to improve the objectivity and differentiation of the paper. This study analyzes the efficiency and productivity changes of electrical construction companies which have not been covered in previous researches. In addition, it has significance in terms of extending the analysis period compared with the previous studies. Significant analysis results of this paper are as follows. As a result of the efficiency analysis using the DEA model, the average of the CCR model efficiency value was 0.59 and the BCC model average was 0.71 for the whole period. The value of the BCC model is relatively high, but the value of the CCR model is low. This means that there is a need to improve efficiency through downsizing or expansion of businesses. In terms of efficiency by year, efficiency is also improved when the amount of electrical construction contract is increased. This means that there is a correlation between economic fluctuations and efficiency. The Bank of Korea expects construction investment to decline through the 2019 economic outlook. Therefore, individual companies should select risk management as the priority of corporate management and pursue profitable management based on profitability. The results of analyzing the productivity change using the Malmquist productivity index are as follows. During the analysis period of the electric work industry, productivity was analyzed to be reduced by about 2%. The decrease in productivity is caused by the decrease in TCI. During the analysis period, the TECI increased by 1%, while the TCI decreased by 4%. Also, TECI increased by 1% during the analysis period, which is attributed to a 2% increase in SECI. On the other hand, the results of the analysis of the productivity change of the electrical companies for eight years are as follows. It was analyzed that the highest MPI companies had an average productivity increase of 13% and the lowest companies had a productivity decrease of 30%. Also, 25 companies showed improvement in productivity during the analysis period, and 27 companies showed technological degradation. As a result of the productivity analysis, technological change such as technological progress, innovation of production method, introduction of new management technique is an important factor for industrial development. Therefore, the government and individual companies need to make the following preparations. First, government R&D support is essential to improve productivity. Individual electric construction companies are small in scale, so it is difficult for companies to develop their own technologies. It is necessary to provide consulting for the electrical construction industry and supply through government-led new technology development. In addition, the incentive policy that raises the score of the technical department and promotes the technology development should be established in the bid and offer system. Next, individual companies also need to explore overseas market and future prospects. Businesses should focus on the Middle East and the ASEAN countries, which are expected to increase in volume due to the recovery of oil prices. In addition, it is necessary to prepare for entry into the field of 4th industry such as smart city and zero energy architecture. This study has the following limitations. First, the number of companies analyzed is limited to 52, which limits their representative. Second, although the size of firms is different, this study does not distinguish between size and business area. Third, in selecting inputs and output factors, we tried to maintain objectivity compared to previous studies, but this still remains a limitation. Fundamentally, efficiency is analyzed differently depending on changes in input and output factors. Fourth, the efficiency and productivity changes of each company were analyzed, but it is difficult to establish specific policies. These limitations are expected to advance through new research in the future.