메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국실내디자인학회 한국실내디자인학회 논문집 한국실내디자인학회 논문집 제28권 제2호(통권 제133호)
발행연도
2019.4
수록면
49 - 58 (10page)
DOI
10.14774/JKIID.2019.28.2.049

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study is aiming at investigating Japan`s `Industrial Vernacular` as the design strategy applied in everyday life and housing market, forging the relationship between the old tradition of handicraft manufacturing and the new technologies. Centering on the architect`s works with the spacial system of Industrial Vernacular in terms of Japanese tradition and housing industry, the process of this study is illustrated as follows: At first, it mentions socio-cultural conditions as the background of Japan`s Pre-fab, and Kiwari system as well as traditional architectural elements. Secondly, it clarifies the architectural structures and the spacial characteristics of Shoin, Minka, Machiya and Soan as the types of Japanese traditional residence. Thirdly, it discusses Industrial Vernacular combined the Japanese traditional architectural concepts with contemporary materials and technologies. It analyses the works of Waro Kishi who set up the concept of Industrial Vernacular, Kazuhiko Namba who uses client base-mass customized system, and Toyo Ito who has developed the strategy of prêt-à-porter. As the result, the characteristics of Industrial Vernacular are summarized as the pre-fab method of ‘sustainable design’ inherent in the Japanese traditional architecture providing flexibility for the future, as the housing system inherited from japanese sensitivity responding to nature with the ecological strategy of `passive design`, and as the pre-fab system adapting to the regional environment by using modern materials and construction techniques on Japan`s vernacular.

목차

Abstract
1. 서론
2. 이론적 배경
3. 인더스트리얼 버내큘러
4. 결론
참고문헌

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-619-000766858