메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강준호 (경북대학교) 권기영 (경북대학교)
저널정보
한국의류산업학회 한국의류산업학회지 한국의류산업학회지 제26권 제4호
발행연도
2024.8
수록면
339 - 352 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
By analyzing vernacular with period and local cultural characteristics in digital fashion media, this study seeks to present visual ideas that effectively convey fashion media presentation methods and fashion concepts. To that end, it collected cases from news articles related to vernacular, digital fashion media, and virtual media published since 2013. “Vernacular” refers to the everyday language used within a specific culture or region. It encompasses unembellished forms that embody the sentiments and understandings of people living within the same contemporary cultural context. The vernacular represented in digital fashion media can be placed into three primary categories: character-centered fashion design expression types, representations through spatiotemporal background images, and layout expressions focused on image processing and editing. The vernacular in digital fashion media can be understood as follows based on expression types. First, it encompasses the concept of digital nostalgia, evoking emotional reminiscence and recalling past cultures. Second, vernacular signifies virtual heritage, in which traditional, geographical, and indigenous characteristics are expressed in the virtual environments of modern society, thereby preserving cultural heritage. Lastly, it represents a hyper-connection, conveying the messages and emotions of fashion brands and enhancing interaction with consumers. In conclusion, the significance of the vernacular in digital fashion media is that it provides creative methods to enhance cul tural diversity, as well as visual ideas for effectively conveying fashion concepts.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0