메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송경환 김강희 (인하대학교) 최상방 (인하대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제56권 제3호(통권 제496호)
발행연도
2019.3
수록면
11 - 23 (13page)
DOI
10.5573/ieie.2019.56.3.11

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
프리페치 기법은 프로세서와 메모리 사이에서 발생하는 메모리 지연시간을 숨기고 성능 격차를 해소하기 위한 방법 중 하나로 프로세서가 자주 사용하는 데이터나 앞으로 사용할 데이터를 예측하고 캐시에 미리 올린다. 이는 프로세서의 메모리 접근 패턴이 길고 복잡해질수록 하드웨어의 구조가 복잡해지고, 매우 많은 저장 공간을 요구한다. 머신러닝 기반의 프리페치 기법인 LSTM (Long Short-Term Memory) 프리페치 기법은 LSTM 머신러닝 알고리즘을 이용하여 학습과 예측을 수행한다. 그러나 LSTM이 예측을 위해 필요로 하는 파라미터의 수가 많기 때문에 많은 파라미터 저장 공간을 요구한다. 본 논문에서는 프리페치의 예측기로서 RNN의 변형 알고리즘인 GRU (Gate Recurrent Unit)을 사용하고 워크로드의 메모리 접근 패턴을 GRU에서 학습하여 다음 접근 주소를 예측하는 프리페치 기법을 제안한다. 제안하는 기법은 우수한 예측 성능을 가진다. 파라미터의 개수를 줄였기 때문에 프리페처 설계시 파라미터를 읽고 쓰기 위한 저장 공간을 줄일 수 있다. 이는 다이면적을 크게 줄여 높은 에너지 소비 효율을 얻게 한다. 또한 예측을 위한 연산과정과 프리페치 주소를 생성하는 시간을 크게 줄인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 하드웨어 프리페치 기법
Ⅲ. 제안하는 프리페치 기법
Ⅳ. 결과 분석
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000565901