메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sung-Won Lee (Chung-Ang University) Je-Hun Yu (Chung-Ang University) Seung Min Park (Chung-Ang University) Kwee-Bo Sim (Chung-Ang University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.19 No.1
발행연도
2019.3
수록면
1 - 9 (9page)
DOI
10.5391/IJFIS.2019.19.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent studies, speech recognition performance is greatly improved by using HMM and CNN. HMM is studying statistical modeling of voice to construct an acoustic model and to reduce the error rate by predicting voice through image of mouth region using CNN. In this paper, we propose visual speech recognition (VSR) using lip images. To implement VSR, we repeatedly recorded three subjects speaking 53 words chosen from an emergency medical service vocabulary book. To extract images of consonants, vowels, and final consonants in the recorded video, audio signals were used. The Viola–Jones algorithm was used for lip tracking on the extracted images. The lip tracking images were grouped and then classified using CNNs. To classify the components of a syllable including consonants, vowels, and final consonants, the structure of the CNN used VGG-s and modified LeNet-5, which has more layers. All syllable components were classified, and then the word was found by the Euclidean distance. From this experiment, a classification rate of 72.327% using 318 total testing words was obtained when VGG-s was used. When LeNet-5 applied this classifier for words, however, the classification rate was 22.327%.

목차

Abstract
1. Introduction
2. Related Work
3. Experimental Method
4. VSR Method
5. Experiment Result
6. Conclusion
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-003-000551537