메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유지현 (Jangan University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제22권 제4호
발행연도
2018.12
수록면
1,175 - 1,179 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 뇌파 신호를 이용하여 환자의 경련을 감지하는 순환 CNN (Convolutional Neural Networks)을 제안한다. 제안 된 방법은 뇌파 신호의 스펙트럼 특성과 전극의 위치를 보존하기 위해 영상으로 데이터를 매핑하여 처리하였다. 스펙트럼 전처리 과정을 거친 후 CNN에 입력하고 공간 및 시간 특성을 웨이블릿 변환(wavelet transform)없이 추출하여 발작을 검출하였다. 여기에 사용된 보스턴 매사추세츠 공과 대학 (Boston Massachusetts Institute of Technology, CHB-MIT) 아동병원의 데이터셋 결과는 시간당 0.85의 민감도와 90 %의 위양성 비율 (FPR)을 보였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-056-000343863