메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영진 (한국기술교육대학교) 김은경 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제12호
발행연도
2018.12
수록면
1,596 - 1,603 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
화재에 대한 신속한 예측과 경고는 인명 및 재산피해를 최소화시킬 수 있는 필수적인 요소이다. 일반적으로 화재가 발생하면 연기와 화염이 함께 발생하기 때문에 화재 감지 시스템은 연기와 화염을 모두 감지할 필요가 있다. 그러나 대부분의 화재 감지 시스템은 화염 혹은 연기만 감지하며, 화재 감지를 위한 전처리 작업을 추가함에 따라 처리 속도가 느려지는 단점이 있다. 본 연구에서는 다중 레이블 분류(Multi-labeled Classification)를 지원하는 CNN 모델을 구성해서 화염과 연기를 동시에 예측하고, CNN의 특징을 기반으로 클래스에 대한 위치를 시각화하는 Grad-CAM을 이용해서 실시간으로 화재 상태를 모니터링 할 수 있는 화재 감지 시스템을 구현하였다. 또한, 13개의 화재 동영상을 사용해서 테스트한 결과, 화염과 연기에 대해 각각 98.73%와 95.77%의 정확도를 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. CNN과 Grad-CAM을 이용한 화재 감지
Ⅳ. 테스트 및 분석
Ⅴ. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000330793