메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nazli Akhlaghinia (Tarbiat Modares University) Ali Rajabzadeh Ghatari (Tarbiat Modares University) Abbas Moghbel (Tarbiat Modares University) Ali Yazdian (Tarbiat Modares University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.4
발행연도
2018.12
수록면
662 - 668 (7page)
DOI
10.7232/iems.2018.17.4.662

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The pharma industry is beginning to realize the benefits of the internet of thing (IOT), especially through modularization, which is already in the detailed implementation and usage stage. pharmatical manufactures that implement IOT technologies can more easily meet requirements for serialization and have the opportunity to leverage intelligent data that are already required in the pharmaceutical manufacturing environment. Using system dynamics model, this study evaluate alternative IOT strategies through investment lens, to provide managers guidance for IOT decisions. In this paper we propose a model of system dynamics for IOT in pharma industry. This study evaluates alternative IOT investment strategies to provide managers guidance for efficient decisions. This paper investigates the typical production logistic execution processes and adopts system dynamics to design cost-effective IoT solutions. The internal and external production logistic processes are first investigated separately. Using sensitivity analysis, the optimal IoT solutions are evaluated and analyzed to provide guidance on IoT implementation. Internal and external production logistic processes are then combined into an integrated structure to offer a generic system dynamics approach.

목차

ABSTRACT
1. INTRODUCTION
2. LITREACURE REVIEW
3. METHODOLOGY
4. SIMULATION RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-530-000325439