메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
강라훈 (한양대학교) 박범준 (한양대학교) 정제창 (한양대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2018 추계학술대회
발행연도
2018.11
수록면
55 - 58 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 가이디드 영상 필터를 (guided image filter) 이용하여 컨볼루션 신경망 (convolutional neural network)을 이용한 역 톤 매핑 (inver tone-mapping; iTMO) 기법의 결과를 향상 시킬 수 있는 알고리듬을 제안한다. 기존 low dynamic range (LDR) 영상을 high dynamic range (HDR) 디스플레이에서 표현할 수 있는 역 톤 매핑 기법이 과거부터 계속 제안되어 왔다. 최근에 컨볼루션 신경망을 이용하여 단일 LDR 영상만으로 넓은 동적 범위 (dynamic range)를 가진 HDR 영상으로 변환하는 알고리듬이 많이 연구되었다. 기존의 알고리듬 중 포화 영역 (saturated region)으로 인해 잃어버린 화소 정보를 학습된 컨볼루션 신경망을 이용해서 복원하는 알고리듬은 그 효과가 좋지만 포화 영역이 아닌 부분의 잡음을 제거하지 못하며 포화 영역의 디테일을 복원하지 못한다. 제안한 알고리듬은 입력 영상에 가중치 기반 가이디드 영상 필터를 사용해서 비포화 영역의 잡음을 제거하고 포화 영역의 디테일을 복원시킨 다음 컨볼루션 신경망에 인가하여 결과 영상의 품질을 개선하였다. 제안하는 알고리듬은 실험을 통해서 기존의 알고리듬에 비해 높은 정량적 화질 평가 지수를 나타내었고, 기존의 알고리듬에 비해 세부 사항을 효과적으로 복원할 수 있음을 확인할 수 있었다.

목차

요약
1. 서론
2. 제안하는 역 톤 매핑 알고리듬
3. 실험 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-000059315