메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
TaeWook Hwang (Chungnam National University) Seonhee Kim (Chungnam National University) Sujeong Kim (Chungnam National University) Gilsang Jang (Chungnam National University) Jihye Park (Chungnam National University) Seongha Park (Purdue University) Eric T. Matson (Purdue University) Kyungsup Kim (Chungnam National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,760 - 1,763 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Autonomous vehicles are familiar to public in daily life nowadays. For a recreational purpose, autonomous vehicles such as drones are commonly adopted for people. However with the easy accessibility, those autonomous vehicles can be a threat to anyone. Moreover, to detect and prevent those possible threats, real-time detection and tracking system is required. With the requirements, we propose a real-time communication between post-processing device and autonomous vehicle tracking sensor, which is a radar and a noise reduction method for post-processing. With the proposed method, a Frequency Modulated Continuous Wave (FMCW) radar can be utilized for real-time monitoring of autonomous vehicle. In this paper, we used an audio file recorded through a FMCW radar for distance tracking. The recorded audio data were processed by Inverse Fast Fourier Transformation (IFFT) and noise cancellation. We propose a data selection formula for faster IFFT processing and a noise reduction method in real-time communication. Also we propose a simple Android application to receive the processed data that sent to as distances of the target autonomous vehicle in time in real-time, so that a user can conveniently watch an autonomous vehicle near the radar.

목차

Abstract
1. INTRODUCTION
2. CONFIGURATION OF THE SYSTEM
3. REDUCING COMPUTATIONAL TIME
4. SIMULATION
5. CONCLUSION AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003540529