메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hiroshi Endo (Fujitsu Laboratories) Shigeto Suzuki (Fujitsu Laboratories) Hiroyoshi Kodama (Fujitsu Laboratories) Takeshi Hatanaka (Osaka University) Hiroyuki Fukuda (Fujitsu Laboratories) Masayuki Fujita (Tokyo Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,278 - 1,283 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this research, we propose an energy-efficient predictive control system with outside-air-introduced-type air conditioner in large-scale data center. The system consists of two parts; a predictive part and a control part. We propose to use a dynamic model construction technique called just-in-time (JIT) modeling in the predictive part. It can estimate the air temperature and humidity in the DC room and temperature at the inlet of servers at a high accuracy while the update of data center model is constructed naturally. We also propose to use a control algorithm that utilizes air enthalpy at outside and DC room in addition to the air temperature and humidity in the control part. Owing to the enthalpy, we achieve an effective energy-saving with both wet and dry air. We introduced this predictive control system to a large-scale data center and had verified the improvement in the energy-saving performance for few month. The air temperature and humidity after one hour could be successfully estimated with an accuracy of correlation coefficient of 0.97 or more using the proposed JIT modeling. Furthermore, we demonstrated that the power consumption of the DC room was significantly reduced by 28.9% using the proposed control algorithm compared to that of the conventional control algorithm.

목차

Abstract
1. INTRODUCTION
2. DATA CENTER SPECIFICATIONS
3. SYSTEM MODELING
4. CONTROL ALGORITHM
5. CONTROL EXPERIMENT AND EFFECT EVALUATION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539837