메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Heoncheol Lee (Agency for Defense Development) Yongsung Kwon (Agency for Defense Development) Kipyo Kim (Agency for Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,102 - 1,106 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses the problem of the embedded system health management for high-speed flight systems. Especially, we focus the variation of power signals used in embedded systems because the electrical degeneration is strongly related to the power levels and frequencies. If the power signals can be classified into normal status and abnormal status, the sudden electrical degeneration of embedded systems can be successfully detected. The conventional threshold-based classification which has been used in aerospace and defense fields cannot find out the hidden anomaly within the thresholds. This paper proposes an accurate power signal classification method using combinational spectrogram-based convolutional neural networks (CNN). The power signals are combined with eigenvalues and converted to spectrogram which can analyze them on time and frequency domain simultaneously. Then, the CNN for power signal classification is trained and validated using the combinational spectrograms. Inference results showed that the proposed method can accurately classify the power signals into normal status and abnormal status.

목차

Abstract
1. INTRODUCTION
2. COMBINATIONAL SPECTROGRAM
3. COMBINATIONAL SPECTROGRAM-BASED CNN
4. EVALUATIONS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539579