메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seunghee Lee (Korean Advanced Institute for Science and Technology) Kyukwang Kim (Korean Advanced Institute for Science and Technology) Jinki Kim (Korean Advanced Institute for Science and Technology) Yeeun Kim (Korean Advanced Institute for Science and Technology) Hyun Myung (Korean Advanced Institute for Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
247 - 250 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, deep learning has achieved great results in many fields such as image classification. However, most general artificial neural networks with deep learning require graphics processing unit (GPUs) because of hard workload and it requires a large amount of power consumption. When we think about humans, we can do a lot of things without consuming a lot of power compared to computers or electric appliances. Human beings or organisms transmit and recognize information through signal transmission between neurons. This study aims to develop a novel deep neural network architecture which simulates the signaling system between biological neurons, unlike conventional neural networks. We propose a novel spike-inspired deep neural network structure with the spike-inspired block using binary weight motivated by spike’s on and off mechanism. We have also designed a modified DenseNet architecture consisting of spike-inspired blocks. Our proposed method was tested and validated with MNIST datasets. The obtained results show the potential of a spike-inspired deep neural network.

목차

Abstract
1. INTRODUCTION
2. SPIKE-INSPIRED DEEP NEURAL NETWORK DESIGN
3. EXPERIMENTS
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538289