메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Choongsang Cho (Korea Electronics Technology Institute) Nam In Park (National Forensic Service) Boeun Kim (Korea Electronics Technology Institute) Younghan Lee (Korea Electronics Technology Institute) In Hye Yoon (ChungAng University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.5 No.3
발행연도
2018.8
수록면
32 - 37 (6page)
DOI
10.15323/techart.2018.08.5.3.32

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper describes topological derivatives for image segmentation and restoration. Segmentation performance based on topological derivatives and level set methods heavily depends on initialization information. To achieve stable and accurate segmentation, an efficient initialization scheme is proposed by modeling an image statistically and by analyzing the modeling result based on information theory and classical test theory. Specifically, an image is modeled using a Gaussian mixture model (GMM) for observed data and hidden data; the model information is derived through the maximization of the likelihood distribution and evaluated using the information theory and classical test theory to obtain the weight factors of GMM and class initials. The experimental results demonstrate that the segmentation performance of the proposed method is more stable and accurate than that of the existing algorithms in terms of visual quality and speed.

목차

Abstract
1. Introduction
2. Background: Topological Segmentation and a Solution to the Variational Problem
3. Proposed Method: Initialization of Topological Derivative Segmentation using Modeling, Information Theory, and Classical Test Theory
4. Experiment
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-688-003400816