메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SeungRi Yoo (Chung-Ang University) Taeyong Kim (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소MINT Moving Image & Technology (MINT) MINT: Moving Image & Technology, Vol.3, No.2
발행연도
2023.8
수록면
6 - 14 (9page)
DOI
10.15323/mint.2023.8.3.2.6

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recent developments in the field of deep learning have brought about numerous changes in the world. Deep learning has had a significant impact on a wide range of fields, including medical care, gaming, autonomous driving, and aerospace, producing remarkable results. In particular, deep learning is demonstrating excellent performance in the field of computer vision. The field of healthcare is closely connected to computer vision, and applying deep learning to medical images is an important and challenging task. Deep learning has played a crucial role in advancing medical image analysis. Researchers have explored the application of deep learning techniques to medical images, and have published many remarkable results. Medical image analysis can be broadly categorized into several areas, such as classification, segmentation, augmentation, and registration. This paper aims to provide a brief overview of important models of deep neural networks (DNNs), which are the foundation of deep learning, and discuss their applications in medical image segmentation tasks.

목차

Abstract
1. Introduction
2. Deep Neural Networks (DNNs)
3. DNNs for Medical Image Segmentation
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091066080