메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한다정 (부경대학교) 박철형 (부경대학교)
저널정보
한국수산해양교육학회 수산해양교육연구 수산해양교육연구 제30권 제4호(통권 제94호)
발행연도
2018.8
수록면
1,471 - 1,483 (13page)
DOI
10.13000/JFMSE.2018.08.30.4.1471

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to forecast squid retail prices considering both seasonality in supply and different effects of seasonality on squid retail prices by processing types, and to find out which model is most appropriate for each processing type. We used ARIMA, SARIMA, and Holt-Winters Exponential Smoothing method to forecast squid retail prices in three different types of processing (Fresh, Frozen, and Dried). The results of MDM test show that the most accurate models for forecasting squid retail price are depending on each processing types. The results of analysis can be divided into two parts: Seasonal characteristics by processing types and forecasting power of models. First, it shows that fresh squid retail price has a circannual seasonality. Second, it shows that frozen squid retail price has a seasonality which is contrary to those of fresh squid retail prices. Third, although the seasonal price variation of dried squid turns out to be minimal, it was still found that the overall seasonal price variation of dried squid follows the pattern of price fluctuations in fresh squid. With regard to the forecasting power of the models, the results of analysis can be summarized as follows. First, the adequacy of models does not always come up with the most powerful forecasting power. Second, we found that the price volatility of squid, caused by uncertainty of supply and seasonal factors, is reduced by going through freezing or drying processing of squids, and the forecasting errors of models also decrease accordingly.

목차

Abstract
Ⅰ. 서론
Ⅱ. 분석 모형
Ⅲ. 실증 분석
Ⅳ. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0