메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hossam El‑Sokkary (Concordia University) Khaled Galal (Concordia University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.12 No.5
발행연도
2018.7
수록면
703 - 716 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
According to the National Building Code of Canada, the seismic force resisting systems (SFRS) of reinforced concrete (RC) buildings are classified based on their ductility level as being ductile, moderately ductile and conventional construction systems. The selection of the ductility level of an SFRS at the conceptual design phase is primarily governed by the seismicity at the building location, the building dynamic characteristics, and the height limitations specified by the design code. The selected ductility level affects the design loads, the cross-sections and reinforcement of the SFRS components, and hence the overall construction cost. This paper aims to evaluate the effect of the wall’s selected ductility level on the quantities of its constituent materials as well as the rebar detailing. Four multi-storey RC shear wall buildings with different heights located in three different cities in Canada; Toronto, Montreal, and Vancouver, were selected to represent three different seismic hazard zones (low, medium, and high). For each building height and location, the walls were designed using the dynamic analysis procedure of the National Building Code of Canada to reach different ductility levels. The construction material quantity estimates were evaluated and compared to a reference case for each building height, seismic hazard and ductility level. The effect of ductility level on the bars detailing is also investigated. This paper helps the structural engineers to select the cost-effective and constructible RC shear wall system at the conceptual design phase before reaching the detailed design phase.

목차

Abstract
1. Introduction
2. Description of the Selected Buildings
3. Analysis and Design of Shear Walls
4. Ductility and Material Quantities
5. Ductility and Rebar Constructability
6. Conclusions
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0