메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이법기 (기술보증기금) 권성근 (경일대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제21권 제6호
발행연도
2018.6
수록면
659 - 666 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The classification of the tablets recovered according to prescription changes is usually carried out manually by a number of pharmacists at the hospitals. Relatively high-wage pharmacists carry out the reclassification of the tablets, which results in a large loss of time and labor, and if the tablets are incorrectly classified, this can lead to medical accidents. In order to overcome these problems, a new automatic tablet classifying machine has been introduced. In the conventional automatic tablet classifying machine, tablets having various shapes, sizes, and colors are transferred to a classifying machine through the line feeder. Problems such as breakaway of the tablets from the line feeder, pilling of the tablets in the line feeder, and appearance contamination of the tablets occur. In this paper, we propose a system that automatically classifies the shape, size, and color of tablets through individual supply method by vacuum adsorption and image processing.

목차

ABSTRACT
1. 서론
2. 일반적인 알약 분류 시스템
3. 제안한 알약 자동 분류 시스템
4. 실험 결과 및 고찰
5. 결론
REFERENCE

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0