메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sungyoul Lee (Prince Sultan University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.2
발행연도
2018.6
수록면
243 - 248 (6page)
DOI
10.7232/iems.2018.17.2.243

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Effective class to classroom scheduling is critical to perform the academic mission successfully in the University. This practice enables students to take the classes they need in a timely manner and contributes to space utilization as well as both classes and classrooms are scheduled efficiently to support the needs of students, faculty and the institution as a whole. Most institutions handle this scheduling with a manual process coordinating multiple department associates and staff members of the Registration Office. Often, a manual process such as this leads to a number of difficulties and is prone to errors. In light of these challenges, Group Technology (GT) provides a potential answer. GT is a manufacturing technique in which parts having similarities in geometry and manufacturing process are manufactured in one location using a specific set of machines or processes. This paper describes the design of a GT based classroom coding scheme that assists the staff at the University to allocate classrooms for a given semester. This scheme accommodates the most important attributes which identify a specific classroom to be selected. These attributes include classroom size, classroom type, distance from the department, and technology or other room requirements. Consequently, the proposed scheme makes class to classroom allocation issue easy and efficient.

목차

ABSTRACT
1. INTRODUCTION
2. RESEARCH TRENDS IN CLASSROOM CODING
3. ESTABLISHMENT OF THE CLASSROOM CODING SCHEME USING GT
4. CONCLUSIONS AND ANTICIPATED EFFECTS
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-003116629