메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용우 (성균관대학교) 신지태 (성균관대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제3호
발행연도
2018.5
수록면
361 - 368 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자율주행 자동차의 연구가 빠르게 발전하는 가운데 보행자 검출에 대한 연구 또한 성공적으로 진행되고 있다. 그러나 대부분의 연구에서 사용되는 데이터셋이 컬러영상을 기반하고 있고 또한 보행자의 인식이 상대적으로 쉬운 영상이 많다. 컬러 영상의 경우 보행자가 빛에 노출되는 정도에 따라 영상에 제대로 포착이 되지 않을 수 있고 이로 인해 기존 방식들로는 이러한 보행자를 제대로 검출하지 못하는 상황이 발생한다. 따라서 본 논문에서는 DNN (deep neural network) 기반 컬러 영상과 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법을 제안하고자 한다. 기존의 SSD (single shot multibox detector) 기법을 기반으로 하여 컬러 영상과 열 영상을 동시에 활용하는 퓨전 네트워크 구조를 제안한다. 실험은 KAIST의 데이터셋을 이용하여 실시하였고 제안한 기법인 SSD-H (SSD-Halfway fusion)의 방식이 KAIST 보행자 검출기준의 기준치보다 18.18% 낮은 miss rate를 획득하였고 또한 기존 halfway fusion 기법에 비해 최소 2.1% 낮은 miss rate를 획득하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 방법
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0