메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정재우 (경북대학교)
저널정보
한국경영과학회 경영과학 經營科學 第35卷 第1號
발행연도
2018.3
수록면
29 - 40 (12page)
DOI
10.7737/KMSR.2018.35.1.029

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since semiconductor/LCD industry is a high-tech industry, constantly introducing new products into market in time through researching and developing is very important factor to secure competitiveness. In addition, it is also recognized as a core competency to maintain high productivity in mass production for lowering the unit price over very high fixed cost. This study develops a model for analyzing the effect of the speed of the R&D experimental products required for new product development in the semiconductor/LCD fabrication line on the throughput of mass production. Generally, when the research and development of new products enters the final stage, several R&D lots are put into operation, and the process conditions are optimized to start mass production. The faster the turn-around time (TAT) of the R&D lot, the faster the new product development speed is. In order to shorten the TAT of the R&D lot, the throughput of the mass production is inevitably reduced because of several factors such as an increase in setup time and scheduling inefficiency. This paper develops a probabilistic model for analyzing the offset structure of the throughput of the mass production according to the speed level of an R&D lot in the semiconductor/LCD production and conducts an empirical analysis to illustrate how the model can be used in practice. The analysis shows what level of mass production loss occurs when a semiconductor fab manager operates a certain level of TAT for an R&D lot. This model is expected to provide the fabrication manager with important information on the appropriate TAT decision of an R&D lot.

목차

Abstract
1. 서론
2. 문헌연구
3. 연구 모형 개발
4. 입력자료
5. 분석결과
6. 결론
참고문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-325-001900620