메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jinwu Seo (Samsung SDS) Hanil Jeong (Daejeon University) Jinwoo Park (Seoul National University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.1
발행연도
2018.3
수록면
14 - 29 (16page)
DOI
10.7232/iems.2018.17.1.014

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
RMCs (Reconfigurable Manufacturing Cells) are production systems which can rapidly change hardware configurations to respond to market variance. Given market demand, manufacturing performance may differ from hardware configurations. To evaluate and compare possible hardware configurations, scheduling may be required. Since schedules specify detailed resource allocation of hardware configurations in concern, managers may make decisions with certainty based on schedules. Previous studies, however, neither provided accurate evaluation of manufacturing performance, nor developed scheduling algorithms in consideration of hardware reconfiguration. The scheduling algorithms for hardware reconfiguration should perform consistent for various hardware configurations and generate schedules as fast as possible. This study aims to develop a scheduling algorithm for RMCs as a basic component of hardware reconfiguration. After a mathematical model which represents the scheduling problem is built, a lower boundbased look-ahead scheduling algorithm is proposed from the thorough analysis of the problem. Experimental result shows that the proposed algorithm generates schedules with performance near the lower bounds, higher than a constraint programming based search engine (iLOG CP) and benchmark dispatching rules, for various configurations and demands. It also appeared to generate schedules as fast as the dispatching rules.

목차

ABSTRACT
1. INTRODUCTION
2. PROBLEM DESCRIPTION AND MODEL
3. DEVELOPMENT OF SCHEDULING ALGORITHM
4. EXPERIMENT
5. RESULT AND ANALYSIS
6. CONCLUSION AND FUTURE STUDY
REFERENCES

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0